Fsrc="https://cdn.subscribers.com/assets/subscribers.js"> '목소리 기구' 태그의 글 목록
728x90

'목소리 기구'에 해당되는 글 2건

  1. 2021.02.08 목소리의 생리와 성대 움직임
  2. 2020.11.22 목소리, 알파에서 오메가 (1)
728x90

 

목소리는 어떻게 생성되고 작동하는지?

우리는 왜 노래를 부르며, 소리는 어떻게 나오는 거지?

 

목소리를 다룰 줄 알고 아름답게 노래하려면, 목소리 생리를 알아야 한다.

보컬 코치들은 목소리를 배에서, 횡격막에서 코끝 등에서 느끼라고 권한다. 성대주름이 있는 목구멍만 아니라면, 어디든 상관없다.

 

한데, 목소리는 성대에서 생겨나는 게 아니던가. (*발성의 <근 탄력 이론>에선 그렇게 본다).

이는 목소리 기구의 구조에 관해 중요한 지식이다. 노래를 우렁차고 낭랑하게 부를지, 아니면 작고 위축된 소리로 부를지는 성대주름이 어떻게 작동하느냐에 달렸다.

 

이번 포스트를 통해 자신의 목소리를 더 잘 이해하고, 올바르게 노래하는 법을 익히는 첫걸음을 뗄 수 있을 것이다.

 

목소리의 생리와 성대 진동에 대해

 

목소리는 음파이다. 음파는 어디서 나오나?

음파는 공기가 을 압박할 때 나타난다. 몸이 공간에서 떨며, 이 진동으로부터 음파를 형성하는 것.

가수들한테서는 성대가 진동을 일으킨다. 성대가 1초에 수백 번 진동하면서 그 주변의 공기가 울리기 시작한다.

 

알고 보면, 우리는 노래하는 게 아니라 주변 공기를 그저 뒤흔드는 것일 뿐. 
소리는 여느 파동과 마찬가지로 끊임없이 움직인다. 거기엔 방향이 있다.
따라서 보컬 방법론/교수법에서는 목소리를 앞으로 보내라고 권한다. 하다못해 나직하게 부를 때조차 그렇다. 안 그러면, 음파가 금방 스러지고 기어들 테니까. 목소리에 힘이 없을 것이다.

 

만약 보컬을 훈련하면서도 성대주름이 어떻게 보이며 어디 있는지 아직 모른다면, 이 비디오를 보시라.

 

 

동영상에서 보다시피,

성대주름은 노래하는 동안 쉽게 늘어나고 모양이 바뀐다. 고음에서 더 얇아지고 더 길어진다. 가장자리가 맞붙는다. 아래쪽은 더 짧고 두터우며 더 단단히 접합한다.

대부분의 노래 기술과 보컬 기법이 성대의 이런 작동 메커니즘에 기초한다.

 

목소리 기구의 구조 [발성기관]

 

노래하는 과정은 우리가 공기를 (날숨을) 소리로 바꾸는 것.

소리는, 횡격막과 성대, 후두, 인두, , , 입천장 등 목소리 기구의 모든 부위를 작동시킨다. 공기 흐름이 음파로 바뀌기 위해 어떤 단계를 거치는지 보시라.

 

 

- 우리가 숨을 들이쉬면 폐가 늘어난다.

 

- 날숨에서는 늑골이 고르게 수축하며 횡격막이 공기를 폐에서 내보낸다. 공기가 폐에서 나와 성대가 붙어 있는 목구멍으로 올라간다. 올라오는 공기 흐름으로 인해 성대주름이 떨기 시작한다. 1초에 수백 번 붙었다 떨어졌다 (닫혔다 열렸다) 하면서 목구멍(인후)에서 진동을 만든다.

 

- 성대의 진동으로 생긴 음파가 수면 위 잔물결처럼 온몸에 퍼진다. 이 음파를 이제 우리가 코와 입 같은 공명기로 보내고, 인두와 가슴, 얼굴에서 진동을 느낀다.

 

- 소리의 공명 파동을 우리는 혀와 입술 같은 조음 기관을 작동하여 모음과 자음으로 만든다소리로 입안을 채운 뒤 앞으로 내보내면서노래를 하는 것!

 

성대주름 작업에서 보컬 오류 

 

목소리 기구의 장치는 앞에 기술한 단계로 이뤄진다. 그 가운데 하나라도 문제가 있다면, 자유롭고 아름다운 목소리가 나오지 못할 것이다.

초보 싱어들 경우, 1단계인 보컬 호흡에서 실수가 발생한다.

다음 두 가지 도식이 노래할 때 잘못된 호흡이다

 

1) 지나치게 많은 날숨 = 성대주름이 단단히 닫히지 못함

 

흔히 저지르는 보컬 오류 가운데 하나는

노래하면서 공기를 전혀 아끼지 않고 아주 많이 내쉬는 것.

횡격막이 호흡 흐름을 제어하지 않으면, 공기가 큰 파도처럼 빠져나간다. 성대주름이 공기압을 견딜 수 없고, 그래서 단단하게 접합하지 못할 것.

한데, 성대가 더 단단히 닫힐수록 목소리가 더 크게 울리지 않는가!

날숨이 지나치게 많으면, 소리가 작게 울리거나 아예 나오지 않을 것이다.

 

그렇게 성대주름 아래의 압력이 어긋나면 보컬 근육의 긴장 저하(hypotension)라는 질환이 생긴다. 성대주름이 두 개의 축 늘어진 누더기처럼 매달려서 서로 맞붙을 수가 없다.

이럴 때 목소리 음색은 거칠게 쉰 소리가 나며, 소리 자체에 맥이 없다.

그런 사람들은 자기가 큰소리로 노래할 수 없다고 여긴다. 사실은, 이 문제가, 날숨을 더 적게 내쉬어 성대주름이 더 단단히 닫히게 하면 쉽게 해결되는 것인데도 말이다. 

 

성대 아래 공간의 공기압

 

2) 지나치게 적은 날숨 = 목소리 클램프

 

앞의 경우와 반대로, 노래하면서 날숨을 지나치게 억제하면,

횡격막이 계속 지나치게 높은 긴장 상태(hypertension) 있게 된다.

그러면 가성대에 클램프가 발생하는데, 이는 날숨을 내보내지 않을 때 늘 일어나는 현상이다.

날숨이 나가지 않으면 성대주름은 스스로 억지로 열리려고 한다. 그러면서 서로 압박을 가하고, 이로 인해 점막이 벗겨지고 물집이 형성되는데, 이것이 성대 결절이다


그러면서 노래하는 동안 화끈거리거나 긁어대거나 문지르는 듯한 통증이 생긴다. 그런 상태에서 계속 작동한다면, 성대는 탄력을 잃는다.

노래하면서 불편을 느끼는 즉시, 성량을 줄이고 나직하게 절반 속삭임으로 노래하라. 우리가 속삭일 때 성대는 열리고 공기가 자유로이 분출된다. 나직한 소리로 노래하면 긴장이 줄어든다.

 

벨팅/belting’ 혹은 보컬 외침이라는 개념이 있는데, 이건 최소한의 날숨으로 이뤄진다. 성대주름이 아주 단단히 닫혀서 큰소리를 낸다.
그러나 그런 기법을 이용하여 제대로 노래하려면, 안전한 보컬 기술을 준수해야 한다. , 소리를 쥐어짜는 게 아니라, ‘하드 어택에서 성대를 꼼꼼하게 닫아야 한다는 것. 공기를 안에 가둬두는게 아니라, 겨우 느낄 수 있는 만큼씩 내보내면서 성대 아래 공간의 압력을 만드는 것이다

*균형을 지키는 게 중요해 – 노래하면서 성대를 단단히 닫되 고르게 숨을 내쉬기

 

 

성대주름의 움직임에는 후두 근육 15개가 관여한다.

후두 구조에는 보컬 근육을 조절하는 연골들이 있고, 이 연골이 또 성대의 적절한 접합을 관장하는 것.

우리는 성대주름을 직접 조절할 수 없다. 원할 때마다 맞붙게 할 수 없다. 아니, 그걸 느끼지도 못한다!

 

보컬 근육은 민무늬근(횡문근/평활근)으로 이뤄져 있으며, 심장과 혈관의 근육도 그렇다. 이런 종류의 근육은 신경계에 직접 반응하지 않으니, 우리가 심장이나 혈관을 우리 의지로 수축할 수 없다! 이런 메커니즘은 독자적으로 작동한다.

 

성대주름에서도 같은 일이 일어난다성대 조절 수단은 날숨과 후두 근육.

날숨은 고르게 흘러나와야 한다. 성대주름이 공기압에 의해 맞붙는다. 또 후두의 움직임으로 인해 성대가 늘어난다.

그러므로, 노래할 때 후두 위치에 따라 목소리 음색이 달라진다. 예를 들어, 후두를 올리면 목소리가 더 높아진.

 

목소리 기구의 구조를 잘 이해하면 많은 것을 할 수 있다. , 위력적인 소리로도, 낭랑한 소리로도, 부드러운 진음(tremolo)으로도, 관객의 영혼을 사로잡는 목소리로도, 때론 샤우팅으로도 노래할 수 있게 된다.

이건 다 성대주름의 접합이 서로 다른 결과일 뿐이다.

 

목소리의 생리에 관한 정보 몇 가지

 

- 세상에 같은 목소리는 없다! 왜냐면 사람마다 성대주름의 길이와 두께가 다 다르기 때문이다. 남자들 경우 성대가 더 길어서 목소리가 더 낮게 울린다. 아이들 목소리가 음색에서 부모 목소리와 비슷한 경우가 많은데, 이건 유전으로 인해 그들의 생리가 비슷하기 때문이다. 그런 면이 있긴 해도 그들 목소리는 서로 조금이라도 다르다.

 

- 성대주름 길이는 사람의 후두 크기에 따라 달라지며 (후두가 더 길수록 성대가 더 길다), 그래서 짧은 후두를 지닌 여자 성대보다 남자 성대가 더 길고 두텁다. 이런 점에서, 만약 어떤 사람을 처음 보는데 목이 길다면, 그의 목소리가 중저음일 것이라고 짐작해도 무방하다.

 

- 성대는, 세로이면서 동시에 비스듬한 보컬 근육의 특수한 구조 덕분에 가장자리만 닫히거나 전체가 닫힐 수 있고, 늘어나고 줄어들 수 있으며, 더 두텁거나 더 얇아질 수 있다. 바로 이런 특징 때문에 목소리의 여러 음색과 힘이 나오는 것.

 

- 보컬 연습은 근육 기억 수준에서 성대의 저런 신축성을 단련하여, 성대가 탄력을 띠고 목소리가 자유롭고 유연하게 만드는 것이다. 성대주름의 탄력성이 커지면, 성역이 늘어난.

 

- 대화에서 우리는 자기 성역의 1/10만 가동한다. , 성대주름은 누구한테서든 10배 더 늘어나고 목소리는 말하는 소리보다 10배 더 높이 울릴 수 있다. 이건 자연이 부여한 특성! 이런 점을 인식하면 높은음을 내기가 더 쉬울 것이다.

 

- 소리의 공명으로 유리잔을 깨뜨릴 수 있고, 기네스북에는 한 소녀가 이륙하는 비행기 소음보다 더 큰 소리를 냈다는 기록이 있다.

 

- 가수들의 성대주름 진동은 대략 (낮은 남성 목소리) 100Hz에서 (높은 여성 목소리) 2000Hz 범위에 있다.

 

성대주름은 우리가 침묵할 때도 작동한다!

 

우리는 일상에서 성대를 익숙하게 이용하면서도 그 진동을 알아차리지 못한다.

그런데, 성대는 우리가 입 꾹 다물고 말하지 않을 때도 작동하는 것이다. 목소리 기구는 우리 주변의 모든 소리를 흉내 낸다. 예를 들어, 곁으로 지나가는 자동차 소리나 록 콘서트 스피커에서 나오는 베이스 기타 소리.

 

그러므로 질 좋은 음악을 들으면, 성대주름이 영향을 받아 당신의 보컬 수준이 향상된다. 또 보컬리스트를 위한 소리 없는 연습, 특히 호흡에서 하는 그런 연습은 목소리를 단련한다.

 

Origin: ovocale.ru/kak-rabotayut-golosovye-svyazki-golos-i-fiziologiya/#svyazki1

 

관련 포스트:

성대주름 작동

태양신경총과 진동

발성에 관한 이론

"이게 내 진짜 목소리란 말이야?"

후두의 구조와 기능

natural tone 소리 내기

좋은 목소리 만들기 실습

목소리 설비 (단련)

목소리로 알 수 있는 징후

내추럴 보이스 되찾는 방법 (4-1)

목소리 음색 다듬는 실습

목소리의 원천은 기관지 시스템

보컬과 연구개 (2)

목소리, 알파에서 오메가 (3)

Singing voice 단련 (2) For My Lady

노래 목소리 혼자 키우는 법 (1)

보컬의 트왱 (Twang)

아이들 공명 노래 기법 (1)

 

728x90
728x90

 

 <목소리, 알파에서 오메가까지> 

 - 오디오 들으며 알고 실행하기 (1) 

 

 

1. 목소리 개관 (설비, 조율) 

Speaking Voice, Singing Voice 

 

목소리 개관

 

bulvoi1-1.mp3
다운로드

 

 

2. 생각과 말과 목소리 

 

목소리는 음파

 

buvoi2.mp3
다운로드

 

 

3. 목소리 기구 (발성, 공명, 조음 기관) 

Natural Voice 

 

목소리 전달

 

buvoi3-2.mp3
다운로드

 

 

4. 목소리 진단 3단계 

 

목소리의 높이, 억양, 멜로디

 

buvoi4.mp3
다운로드

 

 

5. 목소리 식별 

 

목소리 성격, 목소리 식별

 

buvoi5-1.mp3
다운로드

 

 

6. 목소리 진단 

 

 

buvoi6-1.mp3
다운로드

 

 

7. 목소리 4P (말 속도) 

 

 

buvoi7-1.mp3
다운로드

  

* 압축하는 바람에 음질이 조금 떨어질 수 있음을 감안해 주시면 고맙겠습니다. ^-^

(알림)  Voice Training에 관심 있는 분들은 여기를 참조해 주세요. 

관련 포스트:

자기 목소리 진단

목소리가 드러내는 사람 성격

목소리가 안 나오게 하려면?

변성기 아이들

Voice training

내추럴 보이스

뉴스 진행 실무 3강

(43) 스피치 리허설

목소리 직업

(36) 목소리 운용

퍼블릭 스피킹(30) 스피치 비평

젊은 교사들이 흔히 범하는 실수

생각과 말

들을 줄 안다는 것 1

퍼블릭 스피킹(3) 말은 생각의 도구

퍼블릭 스피킹(4) 입말 요소

내추럴 보이스를 되찾으면 인생이 달라져!

목소리 발성 메커니즘

긴장과 목소리

728x90
728x90